
Industry Interaction Session 2021

Applicable Automation & I4.0 Technologies (for the Malaysian Rubber Industry)

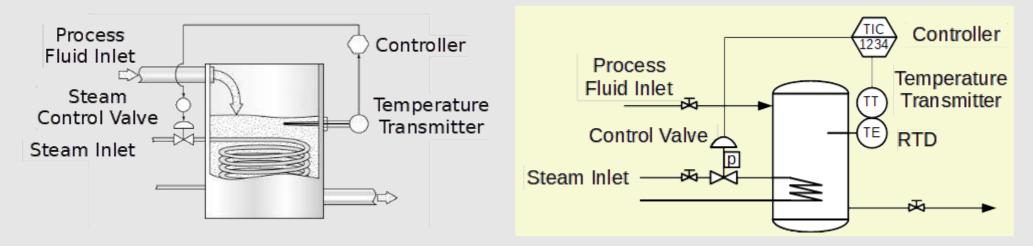
by the Automation Expert Panel:

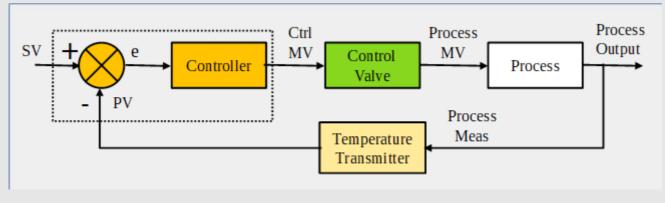
- EP Chairman: Mr. Lee Boon Teck
- EP Member : Mr. Tiong Khe Hock
- EP Member : Assoc Prof Ir Dr Chang Yoong Choon

Outline

- A. Basic Automation technologies
- B. Basic I4.0 technologies
- C. Summary of Applicable Technologies
- D. Case studies

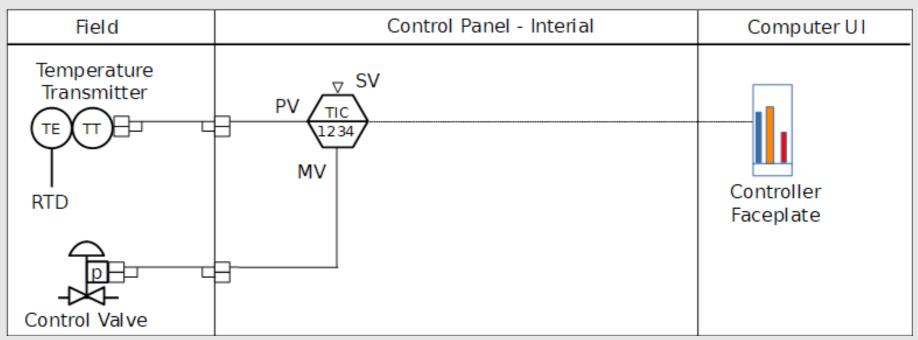
FA – Pick-and-Place by robotic arm


FA - Sequence control of conveying belt system.

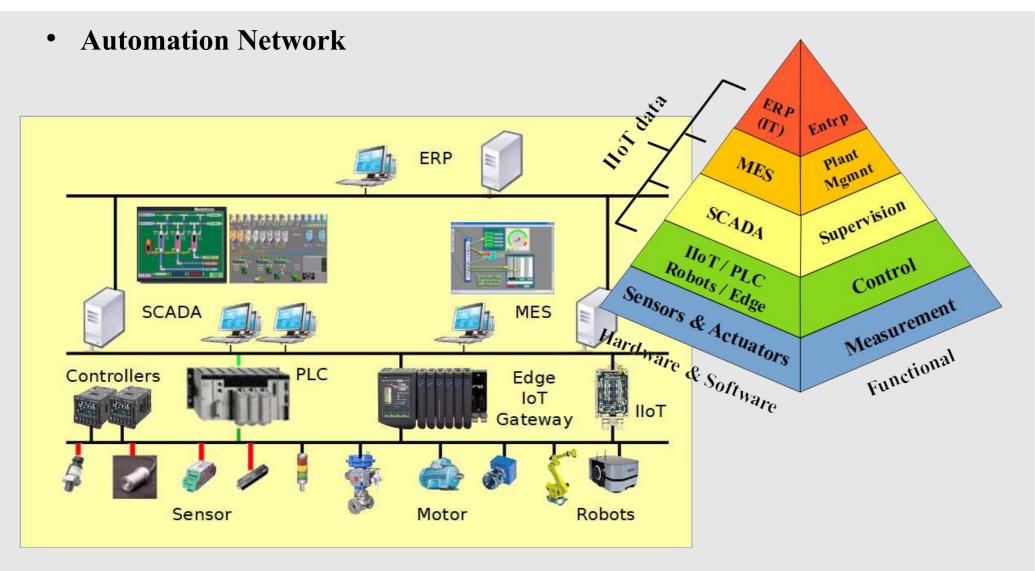


Documentation: Process, P&ID, Loop diagram

• Process: vs Process & Instrument Drawing (P&ID):



• Control Loop Block Diagram:



- Documentation: Process, P&ID, Loop diagram
 - Loop Drawing (Wiring diagram)

Applicable Automation & I4.0 Technologies

Applicable Automation & I4.0 Technologies

A. Basic Automation & Applicable technologies

1. Applicable Measurement & Actuators Types of Sensors

- Proximity Sensors (On-Off)
 - Opto, Inductive, Capacitive
 - Through-beam, Retro-reflective, Difuse-reflective
- Displacement/Distance/Position/Thickness Sensor
 - Laser, Ultrasonic, Rotary/Linear encoder
- Level/Pressure/Temperature/Flow transmitters
- Force/Loadcell/Weighing indicator
- Vision/RFID/Bar-code

Applicable Automation & I4.0 Technologies

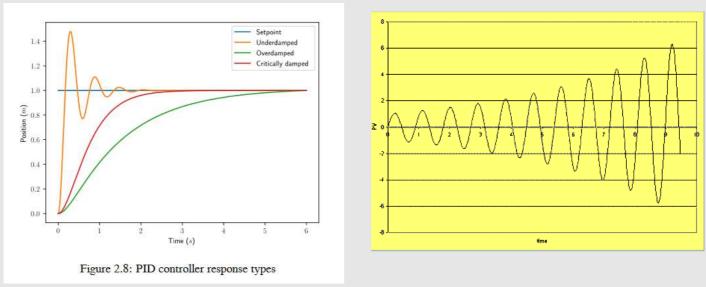
A. Basic Automation & Applicable technologies

- 2. Applicable Measurement & Actuators <u>Types of Actuators & Drives</u>
 - Linear On-off Cylinder Actuator
 - Linear Positioning Cylinder Actuator
 - Damper Actuator
 - On-Off motorized Valves (Ball-valve, Diaphragm valve)
 - Modulating Control Valves (globe, Ball-valve, needle valve, Butterfly valve)
 - Fan (motors)
 - Stepper motors
 - Servo-drives
 - Robots/Co-bots/AMR

2. Applicable Automatic Control

Types of Control Devices

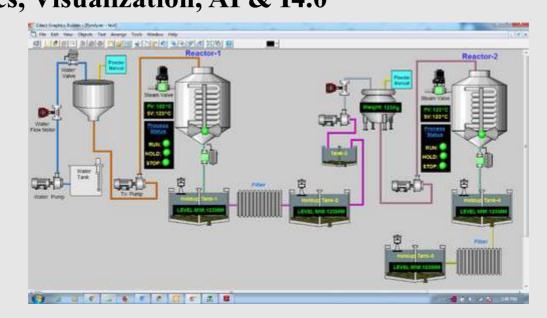
- Dedicated On-Off Controller
- Dedicated PID Controller
- DCS (Distributed Control System)
- PLC (On-Off, Interlock logic, Sequence, PID, Recipe Batch)
- IIoT (On-Off, Interlock logic, Sequence, PID, Recipe Batch)
- Edge Controller/Gateway
- Edge Computers



2. Applicable Automatic Control

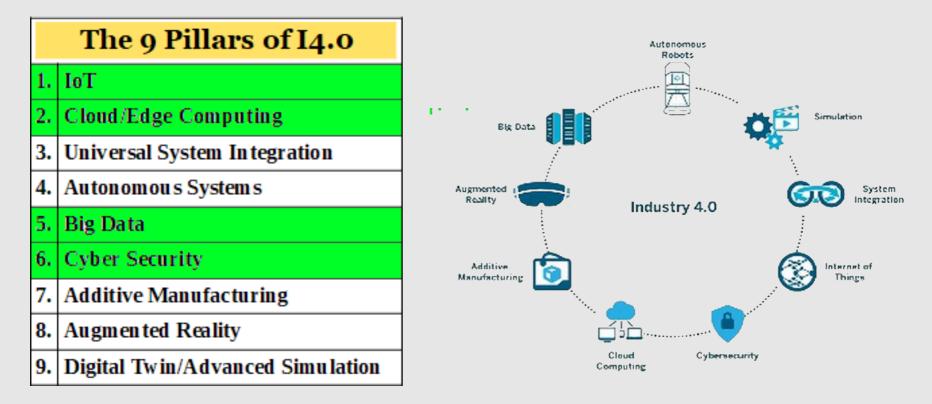
Types of Control Functions

- On-off Control/Gap Control/Interlock Logic Control
- Proportional Control
 - PID Control (feedback control) / Self-tuning control
 - Time-Proportional control/Fuzzy logic
- Recipe Batch Sequence Control


Watch out for oscillation response (with increasing amplitude)

Applicable Automation & I4.0 Technologies

3. SCADA (Supervisory Control And Data Acquisition) Analytics, Visualization, AI & I4.0


4. MES (Manufacturing Execution System)

Production Planning, Analytics, Visualization, AI & I4.0 (SCADA & MES offerings are merging)

What is Industry 4.0

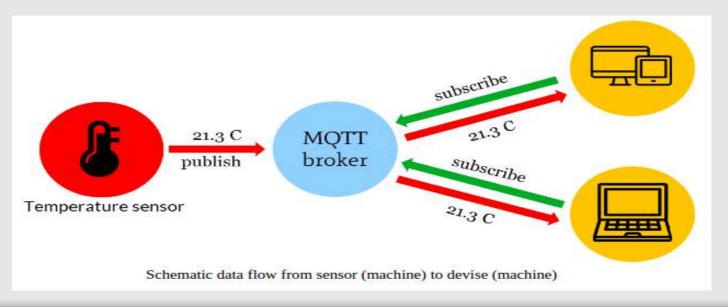
- German initiative in 2011 (10 years has passed by)
 - Seamlessly combine Hardware, Software & Cyber Space (Internet) as a whole
- Digitalization / Digital Transformation of manufacturing/production

I4.0: Industrial Internet of Things (IIoT)

• Industrial IoT is an essential part of an I4.0 implementation

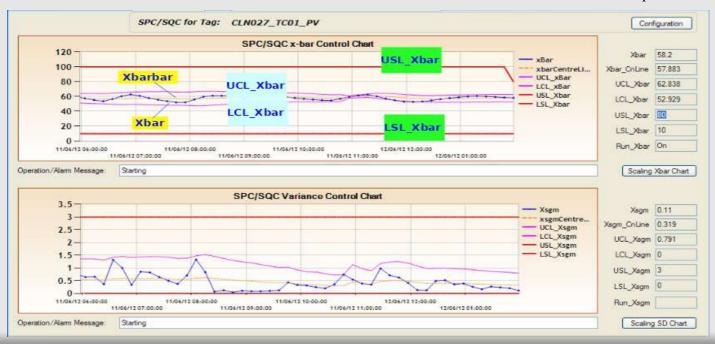
What is an IoT / IIoT

- A device that contains **embedded controllers Includes:**
 - I/O connection to Sensors & Actuators
 - Local Data Collection & Data Analysis
 - (may include Sensors, Local Control and/or AI
- Standard and Open communication protocol (eg. MQTT)
 - data exchange with other devices/systems over the Internet
- Usually supports wireless communication



I4.0: Industrial Internet of Things (IIoT) The MQTT communication protocol

- MQTT stands for Message Queuing Telemetry Transport.
- Open Standard (OASIS standard and ISO recommendation).
- Protocol usually runs over TCP/IP
- Protocol is Lightweight
- Based on **Publish-Subscribe** network model (efficient)
 - data is **Pushed** by Publisher (instead of **Polling** by clients, such as OPC)



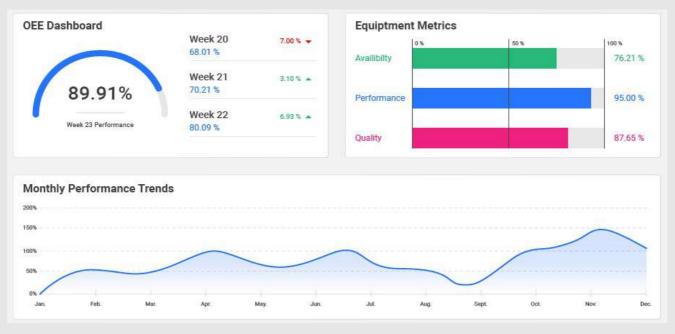
I4.0: Applicable Analytics:

- Real-time SPC/SQC
 - Generate statistical point based on a group of SAMPLE POINTS
 - x-bar Chart: Plots of sample AVERAGE
 - s-Chart: Plots of sample Std. Dev. (SD)

• Benefits of SPC/SQC

- Notify on: Process RUN & OFF-SPEC conditions
- Generate: Process Control Limits & Process Capability C_{pk}

Applicable Automation & I4.0 Technologies



I4.0: Applicable Analytics:

Real-time OEE

OEE = Availability x Performance x Quality

- Single machine OEE plus Line OEE
- **Benefits of real-time OEE**
 - Insight into line Bottle-neck and Spare capacity
 - Notify on: Low OEE, Availability, Performance & Quality

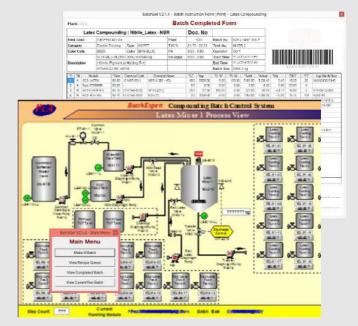
Applicable Automation & I4.0 Technologies

I4.0: Applicable Analytics Real-time OEE – Challenges:

- Availability = (Real Run Time) / (Available Time)
- Performance = (Real Cycle Time) / (Ideal Cycle Time)
- Quality = (1st. time Good Products) / (Total Good Products)

Available Time = (Total Time) – (Planned Downtime) Run Time = (Available Time) – (Unplanned Downtim

- **Challenge 1:** How & When to incorporate <u>Planned Downtime</u>?
- **Challenge 2:** What is the <u>time period</u> of measurement
- Challenge 3: How to plot a trend of real-time OEE


Povest

Rubber Glove Manufacturing:

Compounding

Recipe Batch Control

- Unlimited Master Recipe available
- Improves Throughput & Quality
- Reduce Manpower
 - Weighing/Temperature control
- Recipe Security
 - Automatic recipe Encrypt/Decrypt
- Batch Traceability
- Real-time Management Reports
 - Raw Material consumption report
 - OEE & Trending:
 - Run time
 - Production throughput
 - Quality analysis

Rubber Glove Manufacturing:

Production Line Monitoring & Control

Production Counting

- Chain Speed control (Geared Motor, Servo-drive, VSD-drive)
- Motor Running Hr & performance monitoring
- Production throughput with Glove Size analysis & monitoring
- Former Analysis
- Former Bypass Synchronization
- Trending & SPC/SQC::
 - Process measurement
 - OEE

Rubber Glove Manufacturing:

Production Line Monitoring & Control

Former Preparation, Dipping Tank Control & Drying

- Former Brushing (Brush, Motor, Servo-drive, VSD-drive) control
- automatic Level / Temperature / flow control
- pH / TDS measurement

Beading

• Brush, Geared Motor, Servo-drive, VSD-drive) control

Vulcanization

• Temperature control / Air flow control

Glove Stripping (Removal)

- Automatic Air Purching control
- Automatic Glove Stripping
- Automatic Glove Pulling & Stacking

Rubber Glove Manufacturing: Production Line Monitoring & Control QA/QC

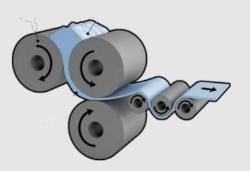
• Automatic QA check on Water-leak test

End-of-line packing

- Automatic Glove Packing
- Inner box packing
- Carton box packing

Utilities

- Water, Gas, Energy Consumption Monitoring
- Energy generation
- Boiler Control
- Solar Energy

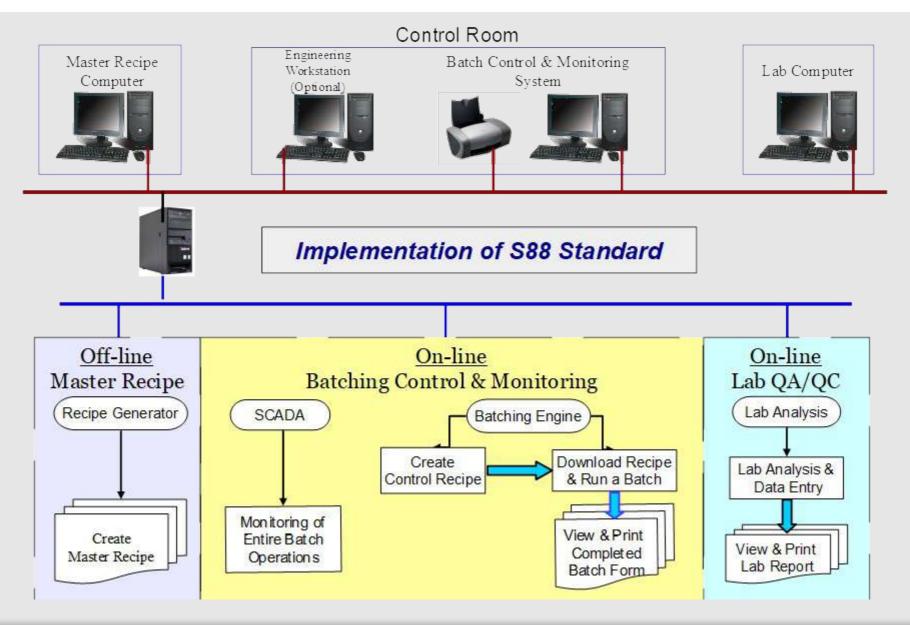

Dry Rubber Manufacturing:

Compounding

- Automatic Small Chemical Compounding Recipe Batch Control
- Computer guided semi-auto weighing & feeding control

Production Monitoring & Control

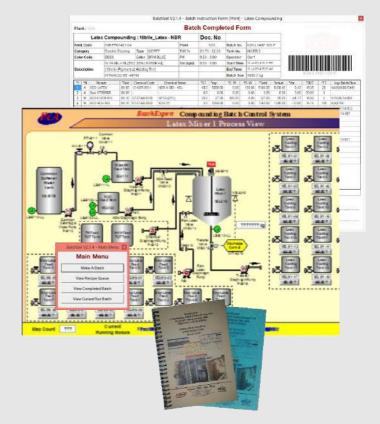
- Production throughput analysis & monitoring
 - OEE / Temperature / Pressure
 - Trending & SPC/SQC
- Conveyor belt control (Geared Motor)
- Calendering Roller Gap Monitoring & Control
- Molding & Vulcanization
 - compression molding, transfer molding, injection molding
 - Pressure / Temperature / Timing control
- QA/QC
- Utilities



• Matrix of Applicable Technologies:

AB	C D	E	F	G	н	1	J	К	L	М	N	0	Р	Q	R	S	Т	U	V	W	X	Y
List of A	utomation Systems & Te	chnology for the M	falaysian Rul	bber Industry																		
Automati	ion Technology Matrix (f	or Latex Products)																				
	Processes / Operations	Key Parameters						Statistical				Technology (II	:/OT)									
Station			Process Measurement		Automatic Control			Control	Machine vision			Robotic			Indentification & La		beling	Big data		Control Hardy		ire
			Real time measur ement	Operator Alert	Continuous Control	Discrete Control	Batch control	SPC/SQC		Mechanical Cam	e-Cam	Traditional	Collaborative	Mobile (AGV/AMR)	Barcode, 2D barcode	RFID	Block chain	Predictive main ten an ce	AI & Data Mining	IoT	PLC	PC-based
1 Comp	oounding (Dilution/Mixing)																					
	Raw material handling													Advanced	Proves	Advanced	Advanced					
8	Batch Control																					
		Weighing Temperature	Proves	Proves			Proves	Recommended							Proves	Advanced	Advanced	Advanced	Advanced	Advanced	Proves	Outdated
		Raw Material																				
		consumption,																				
	Control Regine Execution	Production	Proves	Proves															Advanced			
		throughput,																				
		Quality Analysis, OFE calculation																				
		CEE CAICIDADION																				
	action Lines																					
0	Overall Operations																					
	Data analysis	consumption, Production/ Glove Size throughput, Former Analysis, Quality Analysis,	Proves	Proves															Advanced			
	Chain Speed control (Geared Motor, Servo- drive, VSD-drive)	Motor Control, Running Hr.& performance monitoring	Proves	Proves	Proves	Proves												Advanced		Recommended	Proves	Outdated
F	form or Cleaning																					
	Dipping & Rinsing	Level, Temperature, TSC, pH	Proven	Proves	Proven			Proves												Recommended	Proves	Outdated
	Former Bypass Synchronization		Advanced			Advanced														Advanced	Advanced	Outdated
	Mechanical Brushing (Brush, Geared Motor,	Motor Control, Running Hr.& performance monitoring	Proves	Proves	Proves	Proves												Advanced		Recommended	Proves	Outdated
	Servo-drive, VSD-drive)	Brush & Former surface QA							Advanced										Advanced	Advanced	Advanced	Outdated
		1. 1777		1	1	1						1		1				1				

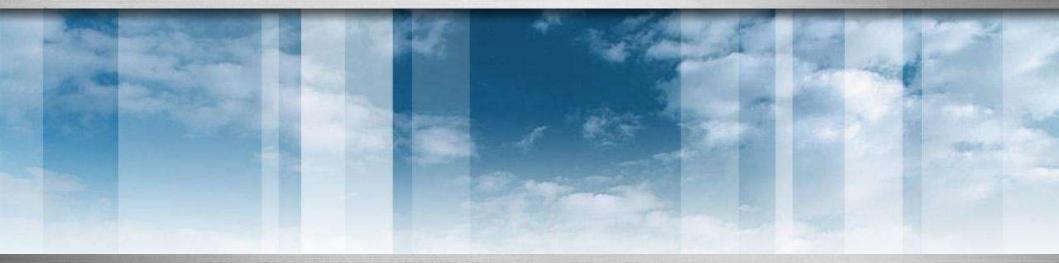
D. Case Study – Recipe Batch Control


Applicable Automation & I4.0 Technologies

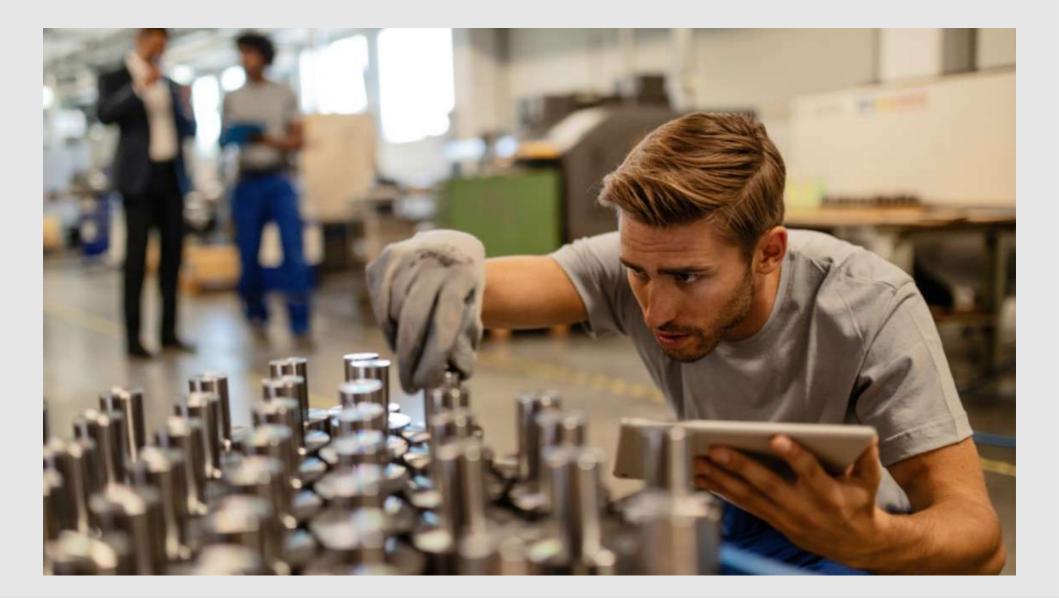
D. Case Study – Recipe Batch Control

Rubber Glove Manufacturing: <u>Compounding Recipe Batch Control (ANSI-SP88 Std.)</u> **Benefits:**

- Master Recipe for unlimited Methods & Formulation
- Automatic recipe encryption (protection)
- Traceability for every batch
- Dynamic weighing error correction
- improves:
 - Management control & accountability
 - productivity
 - Consistency, Acuracy & Quality
- Eliminate reworks
- Reduces Manpower & Wastage


Thank You

Lee Boon Teck Managing Director, PQuest MSC Sdn. Bhd. bteck2005@gmail.com 012-2830916


Next Presention to follow ...

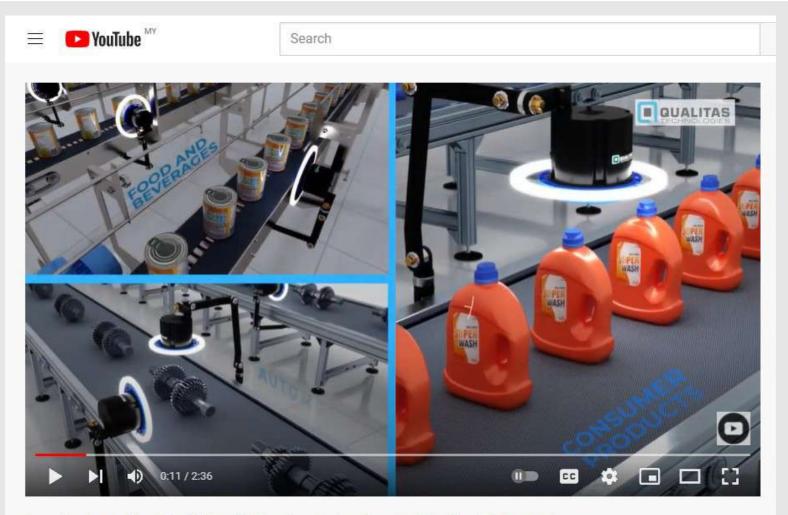
Vision Inspection Systems in Manufacturing

Ir. Dr. Chang Yoong Choon Associate Professor & Head Department of Electrical and Electronic Engineering Universiti Tunku Abdul Rahman (UTAR)

Traditional Manual Quality Inspection

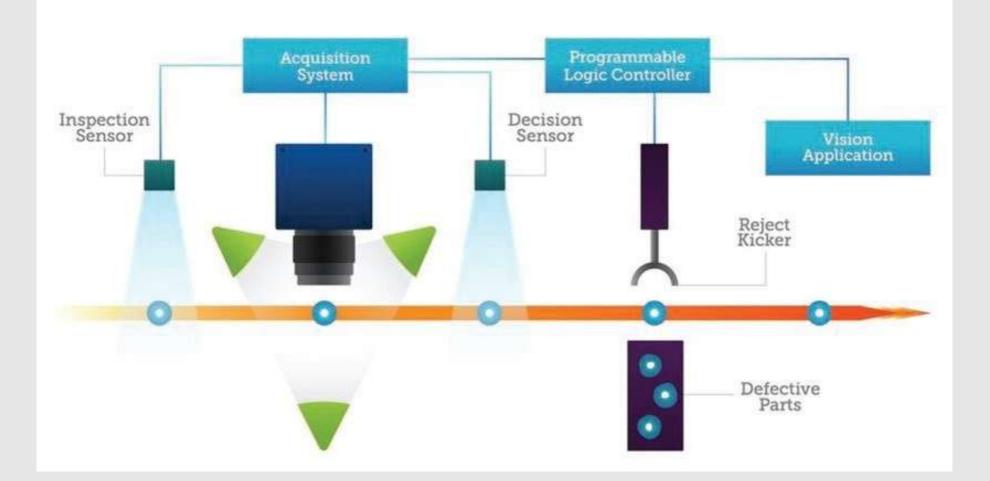
Traditional Manual Quality Inspection

Challenges of Manual Quality Inspection

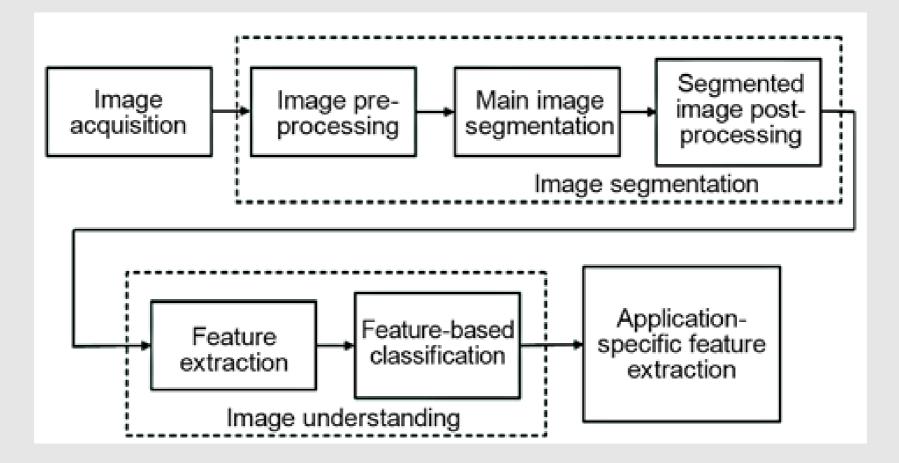

Work fatigue

COVID restrictions (social distancing, lockdown, etc)

Vision Inspection System (Video)

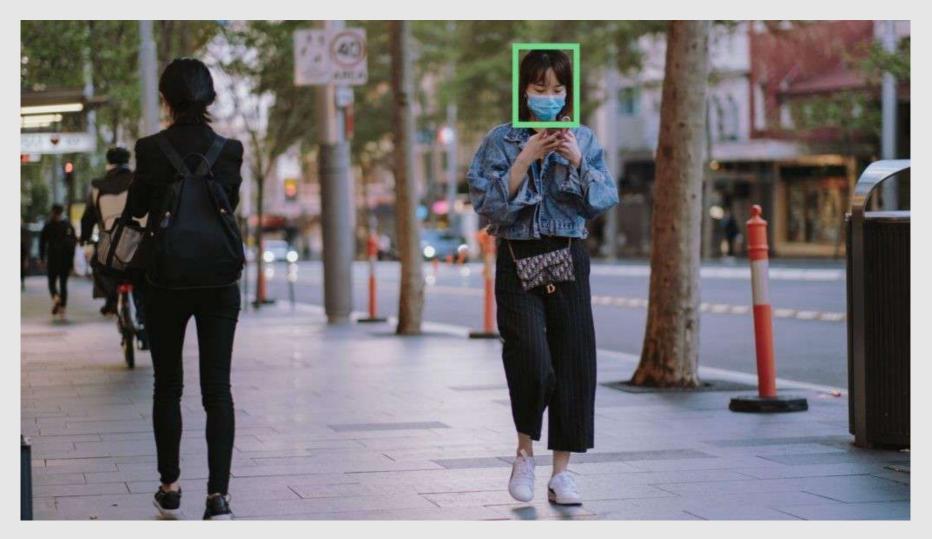

Introduction to Machine Vision | Vision Inspection System | Qualitas Technologies

Vision Inspection Systems



Vision Inspection System

Vision Inspection Technique


Al in Computer Vision Techniques

<text>

Deep Learning

Al vs Machine Learning vs Deep Learning

AI: Technique which enables a machines to mimic human behaviour

Computer Vision Techniques

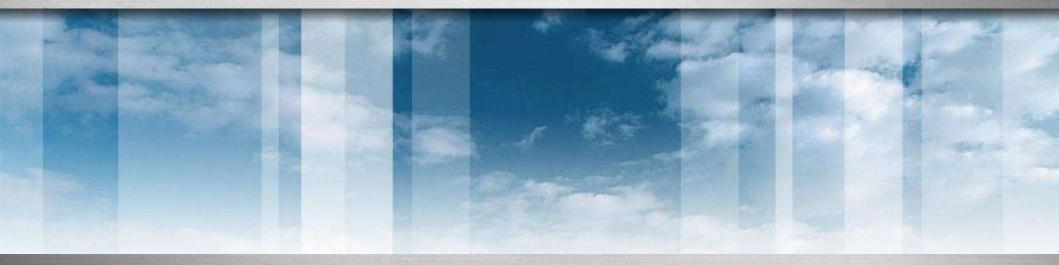
- From Machine Learning to Deep Learning
- Increase of dataset (increase of storage space)
- Increase of GPU computational power (Moore's law)
- Increase of Internet bandwidth (data rate)

Vision Inspection Systems: Advantages

- Consistent quality, not affected by work fatigue
- Increased manufacturing throughput
- Up to 99% accuracy (provided sufficient samples)
- Minimal impact by COVID restrictions
- Industry 4.0 ready with data analytics (e.g. reject rate, inspection throughput, etc)
- Potential ROI in 2 years

Thank You

Ir. Dr. Chang Yoong Choon ycchang@utar.edu.my 013-6229899


Next Presention to follow ...

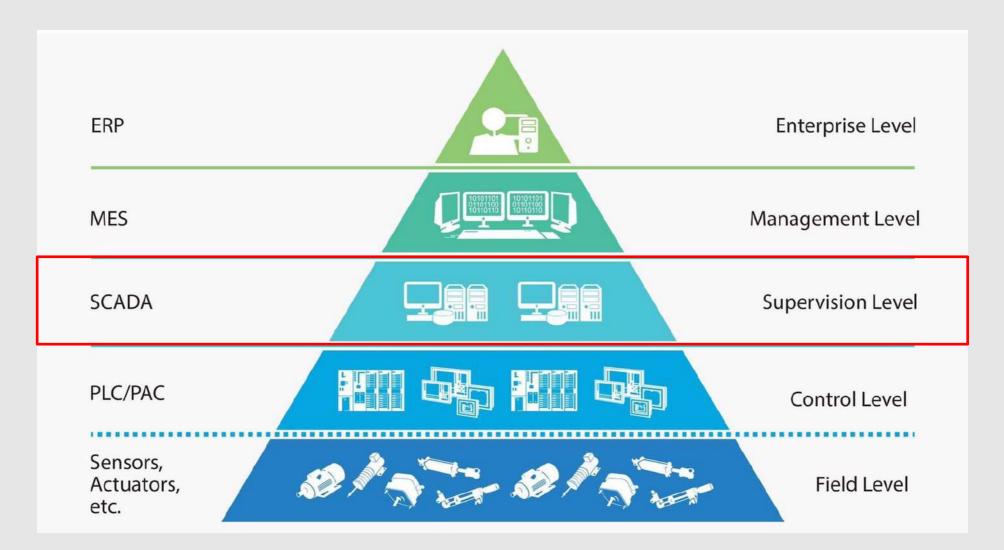
Applicable Automation & I4.0 Technologies

SCADA and Robotics Applications in Rubber Industry

Tiong Khe Hock

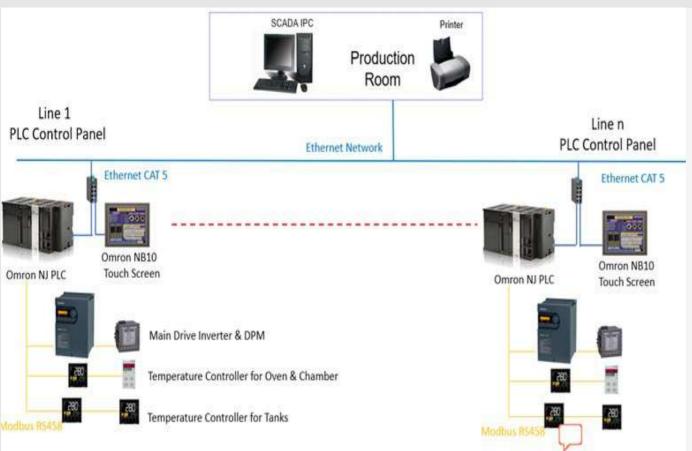
President Malaysia Automation Technology Association (MATA)

Outline

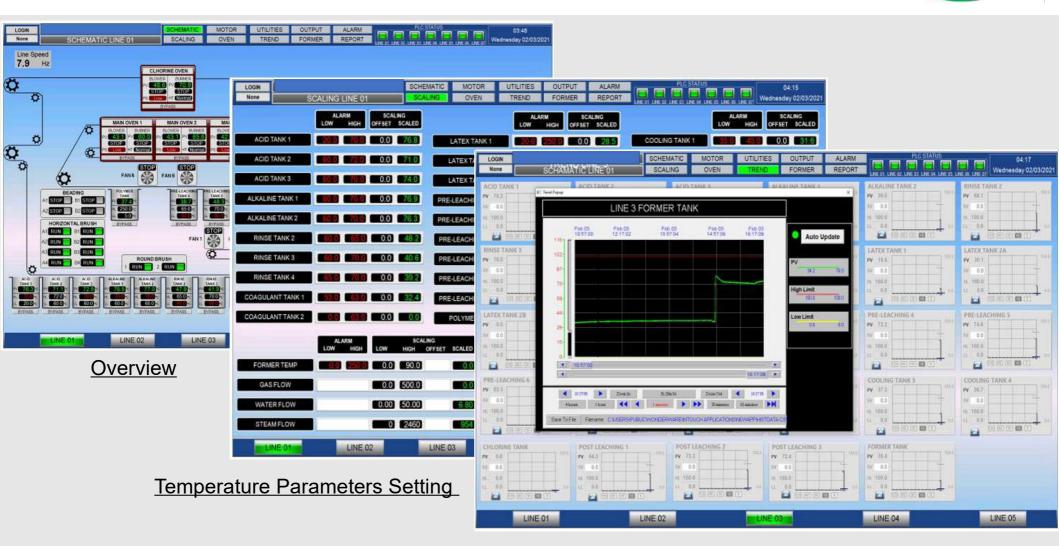


- Automation Pyramid & SCADA
- SCADA Applications
- Robotic Installations in Malaysia
- Robotic Applications

Automation Pyramid & SCADA


Supervisory Control & Data Acquisition (SCADA)

SCADA Applications – Rubber Glove Industry


Dipping Line Supervisory Control and Data Acquisition

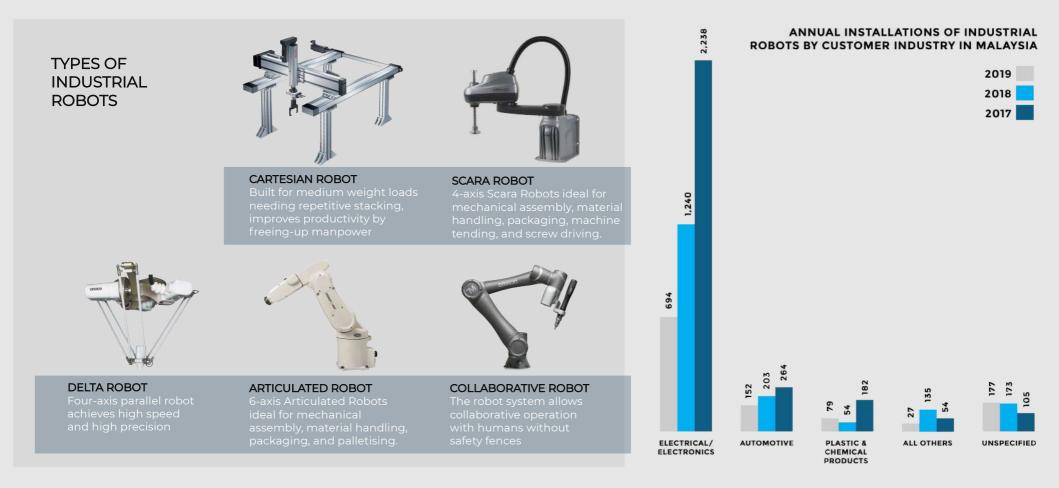
Benefits


- Reduce manpower and eliminate human error during start up.
- Reduce energy consumption at the blower motor.
- Reduce signal wiring between Main panel & fields devices via Fields Bus network.
- Reliable data sending direct to SQL without SQL knowledge.
- Real-time monitoring to quickly identifying waste/performance opportunities.
- Auto- reporting generation for production

SCADA Applications – Rubber Glove Industry

Temperature Trending

SCADA Applications – Rubber Glove Industry



Alarm Logging

Robotics Installations in Malaysia

ROBOTIC INSTALLATIONS BY INDUSTRY

Automated packaging process for productivity improvement

<u>Issues</u>

Labor Intensive

- · Very dependent on workers.
- Manual counting leads to quality issue
- Low efficiency with long working hours
- Process bottleneck.

Solutions

Auto-Insertion System with Robotic Picking

- Robotic glove transfer after stacking.
- Mechanical movement with servo control during glove insertion
- Auto case packer system into carton box

Automated packaging using Servo Control and Collaborative Robots

Benefits

- 1. Pick glove stack from conveyor feeding into packaging machine 3. Packed boxes ready for • carton insert 2. Box material loading & replenishment
- Reduces manpower dependency during layering process.
 - Fully automate process to ensure quality consistency.
 - Seamless software integration using EtherCAT for wiring cost reduction.
 - Easy Troubleshooting online to PLC, able to configure, set and tune every motor.
 - Simple Proven Integration and allows remote troubleshooting.

SCADA and Robotics Applications

Robotics Applications – Rubber Glove Industry

Intelligent Carton Erector using Collaborative Robots

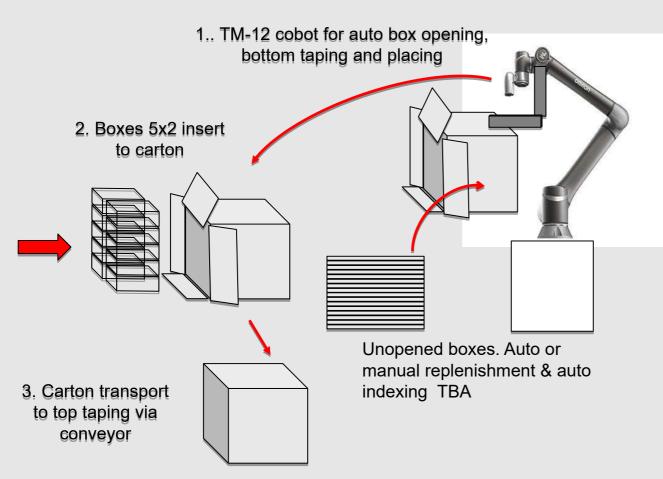
<u>Issues</u>

Labor Intensive & inflexible

- Very dependent on workers.
- Multiple carton sizes hard to automate.
- Long changeover time (for standard carton erector) – mechanical adjustment is needed.

Cobot handling for multiple SKU

- Carton erector by using cobot.
- Mechanical design with servo control for inner boxes arrangement.
- Conveyor transfer for finish box.


48

SCADA and Robotics Applications

Robotics Applications – Rubber Glove Industry

Auto Box to Carton Insertion with Collaborative Robots

Benefits

- Flexible, safe & space saving.
- Support wide range of carton size without any mechanical changeover.
- Minimize manual works to reduce human dependency.

Collaborative Robot Palletizer

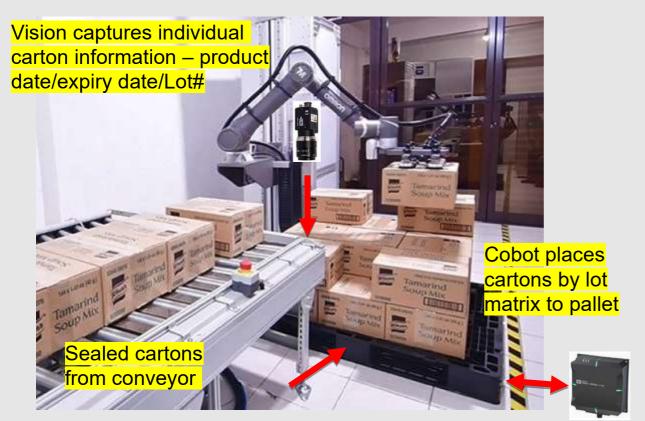
<u>Issues</u>

Labor Intensive

- Manual palletizing with heavy load (worker ergonomics)
- Conventional palletizer robot need big floor space to implement

Solutions

Flexible palletizing with proven Cobot


- Provide cobot palletizer which required minimum footprint
- Install stacker system if the reach is more than 1300mm
- Bundling with 2D code or RFID reader for full traceability

Collaborative Robot Palletizer

RFID write Lot information & qty to pallet tag

Benefits

- Flexible, safe & space saving. (no cage)
- Up to 9 pick per minute
- Integrated vision to detect carton position before pickup
- Minimize manual works
- Collaborative Robots are designed to be easily redeployed to different tasks and applications, making production as flexible as needed

Robotics Applications in Manufacturing

Automated Material Transfer using Mobile Robot

<u>Issues</u>

Manual transport & traceability

- Labor dependent. (pushing trolley / pallet jack / driving forklift in production floor)
- Low efficiency
- Safety concern (Forklift)
- Not traceable

Solutions

Autonomous transportation with traceability

- Adopt Mobile Robot for Carton replenishment or finish goods pallet transfer to storage area
- Full material movement traceability with ID code reader
- Payload up to 1,500 kg with Fleet Manager system can manage up to 100 robots

Thank You

Email: khe-hock.tiong@omron.com H/p: +6019-3528811 Website: www.automation.org.my